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Abstract—For an autonomous vehicle to operate safely, it must
be able to accurately estimate the collision risk of any planned
trajectory, accounting for uncertainty in its own motion and in
the environment. The challenge is that when this uncertainty
is complex and non-Gaussian, we can no longer rely on a
simple analytical formula to calculate risk. This forces us to
use sampling-based methods, where sample efficiency becomes
paramount. We introduce our novel approach to this prob-
lem, which leverages Distribution Embedding in a Reproducing
Kernel Hilbert Space and the Maximum Mean Discrepancy
(MMD) to create a highly sample-efficient risk estimator. We
have validated this technique in two critical applications: first,
planning around dynamic obstacles with multi-modal future
predictions, and second, stochastic Model Predictive Control
under uncertain dynamics. Our results consistently show that
this MMD-based method is significantly more sample-efficient
than the widely-used Conditional Value at Risk (CVaR) metric.

I. INTRODUCTION

Collision avoidance is central to autonomous driving, requir-
ing the ego vehicle to plan safe trajectories under uncertainty
in both environment and dynamics. Such uncertainty, often
complex and non-Gaussian, cannot be captured by simple
parametric models, making sampling-based risk estimation
necessary. In this setting, computational cost and sample
efficiency are critical.

We study two applications. First, with deterministic ego
dynamics, uncertainty arises from neighboring vehicles whose
predicted trajectories are multi-modal [1]–[3]. Our approach
[4] exploits these predictions to distinguish high- from low-
probability behaviors, enabling safer planning. Second, with
deterministic obstacle motion, uncertainty stems from noise
in ego vehicle’s dynamics and localization errors. Here, risk-
aware trajectory optimization provides a principled framework
[5], [6], but analytic models are intractable and Gaussian
approximations unreliable [7], [8].
Contribution: Our work [4], [9] proposes a sample-efficient
surrogate for collision risk estimation that is robust to arbitrary
uncertainties in both environmental and vehicle dynamics. The
method is founded on the concept of distribution embedding
in a Reproducing Kernel Hilbert Space (RKHS), utilizing
the Maximum Mean Discrepancy (MMD). We demonstrate
that, for a fixed number of samples, our proposed surrogate
exhibits lower variance and thus greater reliability compared
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Figure 1: The figure shows a scenario where an obstacle has multiple
intents (lane-change vs lane-following), each associated with a trajectory
distribution. However, both intents have wildly different probabilities. In
this particular example, the probability of lane-change is higher. For safe
navigation, the ego-vehicle needs to consider this multi-modal nature of
obstacle trajectories while planning its own motions. Our proposed approach
estimates the more likely samples (the reduced-set) from a set of obstacle
trajectories sampled from a black-box distribution. This allows us to plan
probabilistically safe motions while appropriately discriminating the low and
high-probability obstacle manoeuvres.
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Figure 2: A standard pipeline for risk-aware trajectory optimization
for stochastic dynamics based on control sampling along with our
improvement. These class of approaches rely on simulating the
forward dynamics of the vehicle to obtain Ñ samples from the state
trajectory distribution, which are then used to estimate risk. Our work
provides a novel risk-surrogate and a systematic way of estimating
it using a reduced number (N ) of state trajectory samples.

to conventional metrics such as Conditional Value at Risk
(CVaR). Consequently, the performance of motion planners
integrating our surrogate converges faster with increasing data
than those employing CVaR.
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Figure 3: The mass of ph is to the right of h = 0. The optimal control
input is one that leads to state-trajectory distribution for which ph resembles
a Dirac-Delta distribution.
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Figure 4: Risk-Aware trajectory planning in an unprotected intersection.
The blue trajectories show the trajectory predictions of the neighboring
vehicles. As can be seen, the predictions are highly multi-modal captur-
ing different driving intents. Typical ego-vehicle trajectories resulting from
different collision risk costs are also shown. It can be seen that remp

MMD
correctly understands that the cyan-vehicle is more likely to turn left. Hence,
it shows least deviation from the recorded ground-truth (black), human-driven
trajectory in the dataset. In contrast, remp

CV aR and rSAA incorrectly puts
more emphasis on the less likely scenario of cyan vehicle turning right. As a
result, the resulting trajectories show a more deviation from the ground-truth
trajectory.

II. PROBLEM FORMULATION

A. Algebraic Form of Risk

Let hk(xk, τ k) ≤ 0, ∀k denote state-dependent safety con-
straints, where xk is the ego state and τ k the obstacle position
at time k. Let x and τ be obtained by stacking together the
respective values at different time step. The worst-case safety
constraint value over the horizon is

h(x, τ ) = max
k

hk(xk, τ k). (1)

In the stochastic setting, either x or τ (or both) may be random
variable, leading to the following general definition of risk:

r = P (h(x, τ ) ≥ 0) , (2)

which measures the probability of violating the safety con-
straints. The fundamental challenge is that it is generally in-
tractable to obtain a analytical formula for r if the uncertainty
in xk, τ k is non-Gaussian. One can always linearize h(.) and
compute a Gaussian approximation of the uncertainty, but such
approaches are unlikely to provide the reliable risk estimate.
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(b) Lane-change scenario

0

2
5 samples

remp
MMD rSAA remp

CVaR

0

1

2 25 samples

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

%
 C

ol
lis

io
ns

Figure 5: Comparing how well different risks remp
MMD , rSAA, remp

CV aR
perform on real-world datasets with Neural Network based trajectory predic-
tors (Trajectron++ [1] in this case). Typically, these predictors define a very
complex distribution over the possible trajectories of the neighboring vehicles
(obstacles). Hence, it is challenging to estimate the collision risk with a few
predicted samples drawn from the distribution. As can be seen, our surrogate
remp
MMD leads to optimal trajectories with lowest collision-rate in both in-lane

driving and lane-change scenarios.

B. MMD based Risk Surrogate

We define the safety constraint residual over the random
variable x, τ as:

h(x, τ ) = max(0, h(x, τ )), (3)

Let h(x, τ ) ∼ ph. The key insight in our work is that although
we don’t know the parametric form for ph, we can be certain
that its entire mass lies to the right of h = 0 (see Fig.3).
Moreover, as P (h(x, τ ) ≥ 0) approaches zero, ph converges
to a Dirac-Delta distribution pδ . In other words, one way of
reducing risk is to minimize the difference between ph and pδ .
Intuitively this minimization will make ph look similar to pδ .
Thus, we propose the following risk estimate following our
prior works [10], [11].

r(x) ≈ Ldist(pδ, ph), (4)

where Ldist is any measure that characterizes the difference
between two distributions. For example, Kullback-Leibler Di-
vergence (KLD) quantifies distribution similarity but requires
known analytical forms, making it unsuitable for comparing ph
and pδ using only sample-level information. In the following
sections, we propose MMD as a potential choice for Ldist.

1) RKHS Embedding of Functions of Random Variables:
Our approach builds on the ability of embedding functions
of random variables in the RKHS [12], [13]. The RKHS
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Figure 6: MPC simulations in CARLA. The red line is the route/reference
path. Left: trajectory from minimizing remp

MMD . Right: trajectory from min-
imizing remp

CV aR. With few samples, remp
CV aR varies sharply across MPC

steps, often yielding no safe plan (vehicle gets stuck and eventually collides).
In contrast, remp

MMD provides a more consistent risk estimate, guiding safe
motion.

Table I: N = 2, Rollout horizon 40, 50 experiments.
Gaussian and Beta noise

Method Town
% Collisions % Lane Constr. Viol. Avg. Speed (m/s) Max. Speed (m/s)

Gaussian Beta Gaussian Beta Gaussian Beta Gaussian Beta

remp
MMD T5 0 0 2.7 3.5 2.59 2.02 4.06 4.07

remp
CV aR T5 15 45 2.14 2.46 2.08 1.53 3.45 3.4

remp
MMD T10 4 0 0.5 5.11 3.56 2 7.01 3.73

remp
CV aR T10 17 4 0.1 3.23 2.73 1.56 4.55 4.07

embedding of h(x, τ ) (or ph) (function of random variable
(x, τ )), and its empirical estimate can be computed as (5a)

µ[h] = E[ϕ(h(x, τ )] (5a)

=

∫
K(h(x, τ ), ·)dph(h) (5b)

where E[.] stands for the expectation operator and ϕ is a non-
linear transformation commonly referred to as the feature-map
[13]. One of the key properties of ϕ is the so-called kernel
trick: the inner product in the RKHS

〈
ϕ(z), ϕ(z

′
)
〉
H

can be

expressed as Kσ(z, z
′
) for any arbitrary vector z, z

′
. Here,Kσ

is a positive definite function known as the kernel function
with hyper-parameter σ. Throughout this paper, we used the
Laplacian kernel for which σ represents the kernel-width.
Let δ be a random variable with Dirac-Delta distribution.
Let µ[δ] be the RKHS embedding of δ (or pδ). We use the
Maximum Mean Discrepancy (MMD) between ph and pδ as
our choice for Ldist in (4)

rMMD = Ldist(pδ, px) =

MMD︷ ︸︸ ︷∥∥µ[h]− µ[δ]
∥∥2
H . (6)

It can be shown that rMMD = 0 implies ph = pδ [12],
[13], [14]. In other words, rMMD = 0 implies that a state
trajectory is safe with probability one. Typically, the r.h.s of
(6) is difficult to compute. Thus, it is common to compute the
empirical estimate (remp

MMD) through sample mean and utilizing
the kernel trick [12], [13], [14], as done in our works [4], [9].

III. KEY RESULTS AND CONCLUSION

A. Benchmarking On nuScenes Dataset Using Trajectron++
Predictor [4]

We present results for the case where the ego dynamics are
deterministic, and uncertainty stems from neighboring vehicles

whose predicted trajectories exhibit multi-modal behaviors We
evaluate two driving settings: in-lane (ego adjusts only speed)
and lane-change (full maneuver set). Collision statistics are
shown in Fig. 5, with trajectory predictions from Trajectron++
[1]. Fig. 4 illustrates an unprotected intersection where the
ego-vehicle must navigate cross-traffic with multi-modal ob-
stacle predictions (e.g., left vs. right turns). The trajectories
optimized with remp

MMD align most closely with ground-truth
human driving, as remp

MMD correctly prioritizes more likely
obstacle maneuvers (e.g., left turn of the cyan vehicle). In
contrast, rSAA and remp

CV aR produce conservative deviations
due to overemphasis on less likely outcomes.

B. Benchmarking in MPC Setting using CARLA [9]

Next, we present results for the case where obstacle motion
is deterministic, but uncertainty stems from process noise in
the ego vehicle’s dynamics and localization errors. We evaluate
the efficacy of remp

MMD in a MPC setting where constant re-
planning is done based on the current feedback of ego and
the neighbouring vehicle state. Fig.6 presents a typical perfor-
mance observed with remp

MMD and remp
CV aR under Gaussian noise

distribution. Due to extremely small number of constraint
residual samples, the variance in remp

CV aR estimation between
consecutive MPC steps is large. As a result, the ego-vehicle
often gets stuck behind the static obstacles and eventually
collides. In sharp contrast, remp

MMD estimates are consistently
successful in guiding the ego-vehicle without collision. Table
I presents the quantitative benchmarking in the MPC setting.
We observed that re-planning can counter some of the effects
of noise. As can be seen, remp

MMD outperformed remp
CV aR in

collision rate and achieved higher max and average speeds.
However, the lane violations of CVaR baseline was lower.
However, this was due to shorter runs caused by collisions
in several experiments.
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