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Abstract— Autonomous drifting is a complex and crucial
maneuver for safety-critical scenarios like slippery roads
and emergency collision avoidance, requiring precise motion
planning and control. In this paper, we propose a novel
Safe Reinforcement Learning (RL)-based motion planner for
autonomous drifting. Our approach integrates an RL agent with
model-based drift dynamics to determine desired drift motion
states, while incorporating a Predictive Safety Filter (PSF) that
adjusts the agent’s actions online to prevent unsafe states. This
ensures safe and efficient learning, and stable drift operation.
We validate the effectiveness of our method through simulations
on a Matlab-Carsim platform, demonstrating significant
improvements in drift performance, reduced tracking errors,
and computational efficiency compared to traditional methods.
This strategy promises to extend the capabilities of autonomous
vehicles in safety-critical maneuvers. This paper summarizes
the methods and results reported in the full paper available at
https://arxiv.org/abs/2506.22894.

I. MOTIVATION AND CONTRIBUTIONS
A. Limitation of existing literature

o Limited learning and adaptation capability: modeling
errors can degrade the drift performance under changing
environmental conditions [1], [2], [3], [4].

« Dependence on prior expert knowledge and data in the
learning process: drift driving data from professional
drivers [5], [6], [7] or initial policies based on prior
knowledge [8], [9], [10].

o No examples of PSF within RL-based motion planners,
to our current knowledge.

e MPC-based drift planners are computationally
expensive [4] and may not be suitable for real-time
operation in rapidly-changing scenarios.

B. Our Contributions

1) We propose a Safe RL-based drift motion planner
that learns the road friction coefficient and adapts the
reference curvature of the path to be tracked, ensuring
accurate drift equilibrium calculation for a low-level
Model Predictive Drift Controller (MPDC).

2) We design a Predictive Safety Filter (PSF) to enforce
safe drifting maneuvers during training and inference
while improving the RL agent performance.
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Fig. 1. Overview of the proposed framework for autonomous drifting along
a variable-curvature path.

3) The proposed Safe RL motion planner requires no prior
expert knowledge for training.

4) Simulation results in Matlab-Carsim show that our
Safe RL planner outperforms a state-of-the-art MPC
planner benchmark in both closed-loop performance
and computational efficiency for online operation.

II. FRAMEWORK OVERVIEW

Our framework (Fig. 1) enables autonomous drifting along
a variable-curvature path. We design a hierarchical planning
and control architecture, where a Safe RL-based motion
planner learns the local reference path curvature and road
friction coefficient, while a Model Predictive Drift Controller
(MPDC) generates low-level drift controls based on the RL
planner’s output. We introduce a Predictive Safety Filter
(PSF) to adjust the RL output curvature and ensure only safe
actions reach the MPDC controller. The MPDC computes
drift equilibrium points and generates controls to maintain
the vehicle in the desired drift states (velocity, sideslip angle,
yaw rate) while following the path. Algorithm 1 overviews
the training of our safe RL motion planner.

III. SIMULATION RESULTS

The training process for the proposed RL planners is
shown in Fig. 2 and the tracking performance is presented
in Fig. 3. The Safe RL planner significantly outperforms
state-of-the-art MPC planners, achieving up to 61.1%
reduction in mean heading error and 49.6% reduction
in mean lateral deviation, while requiring 3.6 times less
computational load.



Algorithm 1 Training our Safe RL Motion Planner

Initialize RL_agent
for episode n =1 to N do

Initialize the vehicle with V' = Vjy at the start of the training path
s0 = [e, A, 8, Kr, €1a, he, heonv] < get initial observations
for time ¢t = 0 to Ty, do

a¢ = [kRrL, #rL] = RL_agent(s;) + compute RL actions

ko = PSF(kgRL) < compute safe curvature

+9 = drift_equil(ko, prr) < compute drift equilibrium

Ty = MPDC(£;?) + compute vehicle controls

st+1 = vehicle(s¢, T¢) < get next state

re41 = reward(s¢41) < compute reward

RL_agent.update(st, at, ¢, 8¢+1) < train RL agent

if |e| > emax then break < early termination

end for
end for
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Fig. 2. The average rewards smoothened over 50 episodes.

To assess generalization, we test a trained RL agent

on

three new unseen tracks with varying curvatures,

and compare it to the MPC benchmark planner (Table

D.

The Safe RL planner consistently outperforms the

MPC, demonstrating its ability to handle unpredictable
environmental changes and its potential for real-world
applications.

TABLE 1

GENERALIZATION IN UNSEEN TEST TRACKS: SAFE RL VERSUS MPC.

Curvature (m~ ') | MPC Planner Safe RL Planner

Track | g End RMSE ¢ (m)  RMSE ¢ (m)
Training | 1/40 1720 036 0.13
Test Track 1 1/45 120 0.49 0.35
Test Track 2 | 140 1/25 0.37 0.26
Test Track 3 | 1/45 1120 0.53 039
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