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Abstract— Autonomous Vehicles (AVs) operating around vul-
nerable road users must handle uncertainties arising from the
multimodal trajectories of these agents, which complicates navi-
gation planning. This work introduces a multi-level optimization
framework that integrates sampling-based and direct optimiza-
tion methods to enhance safety and trajectory smoothness. In
the first stage, a sampling-based strategy employing the Fusion
of stochastic Predictive Inter-Distance Profile (F-sPIDP) identi-
fies safe candidate trajectories by modeling multimodal traffic
dynamics and uncertainty. The optimal reference trajectory and
F-sPIDP setpoints are then selected under strict safety and
smoothness constraints. A secondary local optimization refines
this trajectory to satisfy AV kinematic and dynamic limits
while accounting for quantified uncertainties. Simulation results
demonstrate the method’s robustness under varying uncertainty
levels.

I. INTRODUCTION

Recent motion prediction models [1], [2] predict distri-
butions of multimodal trajectories rather than single paths
(cf. Fig. 1), enabling better handling of perception noise
and abrupt behaviors, such as sudden velocity changes by
Personal Light Electric Vehicles (PLEVs). However, two
main challenges persist: (1) uncertainty in the predicted states
of surrounding agents and (2) difficulty in managing multi-
modal motion predictions without excessive conservatism.
Conventional methods [3], [4] and Model Predictive Con-
trol (MPC) [5] struggle with these issues, while Stochastic
MPC (SMPC) [6], [7] is often overly conservative. Direct
optimization approaches tend to find only local optima in
nonlinear systems [8], and sampling-based planners [9], [10]
usually neglect agent dynamics to reduce computation.

To address these limitations, this paper proposes a multi-
level motion optimization framework combining sampling-
based planning with local control refinement for safe and
smooth navigation under uncertainty. Key contributions in-
clude:

- A multi-level architecture integrating sampling-based and
direct optimization for robust decision-making and control.

- Incorporation of the Fusion of stochastic Predictive
Inter-Distance Profile (F-sPIDP) [11], that extends the PIDP
framework [12], [13], [14] to represent multimodal behaviors
and stochastic uncertainties.

- Development of a sampling-based planner using F-
sPIDP-derived safety constraints, followed by local control
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Fig. 1. A scenario showing the evolution of the uncertainty of multiple
PLEVs with multimodal motion uncertainties, the candidate trajectories of
the AV, the selected global safe trajectory, and the local control trajectory

optimization ensuring dynamic feasibility and consistency
with uncertainty profiles.

Simulation results demonstrate improved safety, robust-
ness, and trajectory smoothness across varying uncertainty
conditions.

II. FRAMEWORK OVERVIEW

The proposed AV control architecture (cf. Fig. 2) relies
on perception and localization inputs (block P) to obtain
the states of surrounding agents and the environment. The
multi-level motion optimization framework comprises five
key modules. The Multimodal Prediction Module (block 1)
uses perception data to predict multiﬁle probable trajecto-
ries of surrounding agents ( {x;(?)};X", where x;(t) =
(z;(t),y:(t),0;(t)) represents the position and orientation
over time t for the j-th mode of the i-th agent ), with
associated probabilities Pr(j) and uncertainties V[x;, y;, 0,],
following [15], [16]. In parallel, the Vehicle Candidate
Trajectories Generation Module (block 2) computes lane-
disciplined trajectories Xqj € Xjrq; in the Frenet frame
[17], ensuring compliance with lane-keeping and lane-change
behaviors.

Next, the F-sPIDP [11] Collision Check Module (block
3) filters unsafe trajectories by evaluating collision risks
under multimodal uncertainty, producing a safe trajectory set
Xsafe- The Optimal Trajectory Selection Module (block 4)
then selects the smoothest trajectory X,.; € Xsqf. Finally,
the Local Control Optimization Module (block 5) refines
control inputs u(t) to track x,.r while respecting vehicle
dynamics and F-sPIDP uncertainty constraints.

III. SIMULATION RESULTS AND DISCUSSIONS
A. Implementation Details

The proposed method was implemented in MATLAB
leveraging built-in functions for the sampling-based refer-
ence trajectory computation, while the direct optimization
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Fig. 2. The multi-level motion optimization architecture showing the inputs and outputs of each module. Red shows the sampling-based trajectory

selection procedure, and blue shows the local control optimization step

problem was solved using the CasADi optimization frame-
work [18]. At each time step At = 0.1, we predict the
motion of the traffic agents over a time horizon, tp,,.. (cf.
video shown through this link https://youtu.be/
S4uAOAuUYsGU)

B. Comparative Analysis of Proposed Method

A cut-in scenario was simulated where a PLEV rapidly
enters the lane to overtake another vehicle (cf. Fig. 3),
representing a realistic challenge involving abrupt, uncertain
maneuvers by vulnerable road users. The PLEV’s motion in-
corporates multi-object detection and tracking errors typical
of LiDAR- and camera-based systems, with translation noise
up to X = 1.0 m [19]. The sampling stage averaged 75
ms per computation, while local control refinement required
20 ms, both suitable for real-time operation and further
accelerable via GPU parallelization.

Trajectory Performance: The proposed multi-level op-
timization with F-sPIDP was benchmarked against the
Chance-Constrained Optimization (CC-Opt) baseline [6].
While both avoided collisions, CC-Opt produced reactive
trajectories with oscillations and poor lane discipline due to
sensitivity to PLEV uncertainty (cf. Fig. 3 (a)). In contrast,
the proposed method generated smoother, collision-free tra-
jectories by integrating stochastic uncertainty within F-sPIDP
and refining them through local optimization. The resulting
AV motion exhibited stable lane behavior and improved
comfort despite the sudden cut-in (cf. Fig. 3 (b)).

Velocity Profile: Similar behavior is observed in the AV’s
velocity profile (cf. Fig. 4 (a-b)). Both methods initially
decelerate sharply in response to the parked vehicle and the
PLEV’s entry, indicating prompt collision avoidance. How-
ever, the baseline method performs repeated deceleration to
accommodate the evolving multimodal PLEV trajectories,
resulting in a jerky and overly conservative velocity profile
that reduces ride comfort and energy efficiency.

IV. CONCLUSION

This work introduces an autonomous navigation algorithm
that ensures safe and efficient motion around dynamic enti-
ties, such as Personal Light Electric Vehicles (PLEVs), under
uncertainty. The proposed multi-level framework combines
sampling-based and local control optimization, using the
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Fig. 3. Comparison of the trajectory performance: (a) Baseline (CC-

Opt) results in oscillatory AV motion, excessively influenced by the PLEVs’
uncertain behavior, (b) Proposed method shows little oscillation by gener-
ating collision-free trajectories that respect desired lane-changing and lane-
keeping maneuvers while accounting for uncertainties in the PLEV motion

Fusion of stochastic Predictive Inter-Distance Profile (F-
sPIDP) to model multimodal behaviors and uncertainties of
surrounding agents. Safe candidate trajectories are generated
and refined to satisfy dynamic constraints while maintaining
probabilistic safety margins. By embedding uncertainty into
the global planning stage, the method demonstrates improved
results compared to conventional reactive approaches. Future
work will focus on accelerating computation through GPU
parallelization for real-time implementation.
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