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Abstract— Ensuring safe and reliable trajectory planning for
autonomous driving remains a critical challenge. This paper
proposes a conceptual learning-based hybrid framework for
proactive trajectory planning in dynamic and uncertain traffic
environments. The framework integrates deep reinforcement
learning for adaptive decision-making and velocity planning,
complemented by optimization-based components to ensure
feasibility and safety. Building on our team’s prior research
experience, future work will focus on refining reward design
and conducting comprehensive evaluations.

I. PROBLEM STATEMENT AND MOTIVATION

In autonomous vehicle trajectory planning, one major
source of safety risk is the uncertainty in the future motions
of surrounding traffic participants, especially in situations
where surrounding agents may exhibit sudden and hazardous
behaviors, which, although not frequent, pose severe safety
risks. To address this, this paper explores a research direction
that leverages proactive trajectory planning to enhance safety
in emergency obstacle avoidance scenarios.

A. Proactive Obstacle Avoidance for Trajectory Planning

Reactive obstacle avoidance strategies typically involve
emergency braking or abrupt steering maneuvers to change
lanes near an obstacle. Such passive responses often compro-
mise ride comfort and, in extreme cases, may even result in
severe collisions. In contrast, proactive trajectory planning
enables autonomous vehicles to take preventive measures
when encountering unexpected events—for example, slowing
down or switching to a clear lane in advance. Reinforcement
learning (RL), with its predictive and adaptive capabilities,
has emerged as a promising approach to support such proac-
tive driving strategies.

Autonomous driving scenarios are highly dynamic and
uncertain, requiring vehicles to continuously interact with
complex traffic environments to learn optimal policies. RL,
centered on interaction and feedback, is particularly suited
to this setting. For instance, [1] employs an LSTM-TD3
network for lane-change trajectory planning, improving over-
all performance by balancing driving efficiency and fuel
consumption. Experiments conducted on the CARLA plat-
form show that this approach effectively reduces lane-change
time while lowering fuel usage. Similarly, [2] presents an
integrated method using deep RL to plan target lanes for
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autonomous vehicles, with numerical results demonstrating
the ability to accurately perform advanced driving behaviors
such as overtaking and maintaining desired speed.

Compared with imitation learning, RL offers greater adapt-
ability in proactive trajectory planning. Imitation learning
relies on expert demonstrations, and its performance is con-
strained by the coverage of the dataset, making it challenging
to handle unforeseen scenarios. By contrast, RL continuously
explores and optimizes policies through interaction with
the environment, allowing it to learn effective strategies
even in previously unseen situations. This capability makes
RL particularly suitable for rare but high-risk emergency
avoidance scenarios in autonomous driving.

B. Learning-Based Hybrid Planning Frameworks

Despite its advantages, RL is not without limitations. Due
to the black-box nature of deep neural networks, learning-
based methods may introduce uncertainty into trajectory
planning, which can pose non-negligible safety risks. A
promising solution is to design hybrid frameworks that
combine learning-based adaptability with the verifiability and
interpretability of optimization- or rule-based approaches.
For example, in [3], the RL agent does not directly output
motion parameters such as velocity or angular velocity.
Instead, it learns the input parameters of a classical motion
planner, thereby incorporating the safety and interpretability
of traditional methods into the system. In [4], for a left-
turn scenario at an unsignalized intersection, the system
falls back on a Monte Carlo tree search combined with
MPC if the agent-generated candidate trajectories fail a
safety check. Likewise, a study from Tsinghua University
[5] employs large language models to automatically generate
driving strategies, which are then implemented as rule-based
decision trees, ensuring executability, interpretability, and
modifiability.

However, hybrid frameworks also introduce new chal-
lenges. Optimization modeling in complex traffic scenarios
often results in highly nonlinear formulations [6,7], reduc-
ing computational efficiency. Careful modeling and efficient
approximations are therefore essential. Our previous work
[8] proposes a MIQP-based approach that introduces only
a small number of binary variables, maintaining obstacle
avoidance reliability while significantly reducing computa-
tional overhead. Building on [9], this method further applies
linear approximations to model vehicle geometry, decreasing
the number of binary variables. Experiments with real-world
data demonstrate that this approach efficiently generates safe
lane-change trajectories even in extreme emergency situa-



tions while ensuring smooth longitudinal velocity changes
and highly smooth lateral maneuvers.

II. CONCEPTUAL FRAMEWORK AND MODELING

Fig. 1. A Learning-based Hybrid Framework

Motivated by the need for proactive and reliable trajectory
planning in dynamic traffic conditions, this paper proposes a
learning-based hybrid framework for autonomous vehicle tra-
jectory planning, as illustrated in Fig. 1. First, the perception
module provides the ego-vehicle’s states and surrounding
environmental information. Based on these inputs, an RL-
trained agent performs high-level decision-making and veloc-
ity planning. Subsequently, a fast heuristic method searches
for a safe corridor based on the decision and velocity profile,
defining feasible drivable boundaries for obstacle avoidance.
Meanwhile, a linearized vehicle geometry model computes
the ego-vehicle’s geometric boundary. These two types of
boundaries collectively serve as hard constraints in the op-
timization model. Finally, a convex optimization problem
generates the ego-vehicle’s optimal trajectory while balanc-
ing multiple objectives, including safety, comfort, kinematic
feasibility, and compliance with traffic regulations.

The deep RL task for decision and velocity planning is
formulated as follows. The state space comprises three com-
ponents: (i) the ego-vehicle’s current and historical motion
states, including position coordinates, lateral/longitudinal ve-
locity, and acceleration; (ii) surrounding vehicles’ current
and historical motion states, capturing interactive behaviors
and traffic flow dynamics; and (iii) environmental features,
such as lane markings and static obstacles. The action space
combines high-level driving decisions (e.g., left turn, straight,
right turn) with longitudinal control variables (acceleration
and velocity), allowing the agent to select appropriate driving
intentions while generating a consistent velocity profile.

Designing the reward function remains a critical hurdle in
applying deep RL to autonomous vehicle decision-making
and trajectory planning. One emerging approach is Inverse
Reinforcement Learning (IRL), which aims to infer the
underlying reward function from expert demonstrations. For
instance, [10] employs multi-agent adversarial IRL to recover
reward functions for both the ego vehicle and following
vehicles before performing trajectory planning and predic-
tion. This provides planners and predictors with a principled

evaluation metric and controllable generation capability. Sim-
ilarly, [11] proposes a learning-from-demonstration approach
that balances behavior cloning and RL exploration, yielding
a trajectory planning method tailored for highly constrained
environments.

Another common approach involves carefully crafted,
experience-driven reward functions. This paper adopts this
strategy due to its flexibility in explicitly prioritizing safety,
efficiency, and comfort while allowing fine-tuned control
over multiple objectives in complex traffic scenarios. The re-
ward function integrates multiple objectives: severe penalties
for collisions ensure safety, maintaining desired velocity pro-
motes efficiency, alignment with surrounding vehicle speeds
fosters traffic harmony, and smooth lateral and longitudinal
accelerations and jerks enhance driving comfort. In studies
with predefined trajectory goals, reward functions may also
incorporate execution completeness [1]. Additionally, adher-
ence to traffic rules, a vital objective, poses difficulties due to
significant variations across driving scenarios, making it hard
to encapsulate within a single reward function. Therefore,
achieving robust and broadly applicable trajectory planning
may necessitate integrating rule-based methods alongside the
reward function, adding complexity to the design process.

Policy learning is conducted using the actor–critic-based
Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm. The agent continuously updates its policy through
interaction with the environment, which consists of two
components. First, the downstream optimization module
transforms the agent’s outputs into executable trajectories,
ensuring physical feasibility and constraint satisfaction. Sec-
ond, a SUMO simulation platform provides a dynamic traffic
environment, allowing the agent to explore and learn in
multi-vehicle interaction scenarios. Once trained, the policy
network can directly output optimal high-level decisions
and velocity plans for a given state, achieving end-to-end
adaptive driving capabilities.

The remaining components of the framework—including
safety corridor search, linearized vehicle geometry modeling,
and the optimization module—are further refined based on
[8], retaining the same modeling principles. As these com-
ponents are not the primary focus of this study, they are only
briefly referenced.

III. CONCLUSION

This paper focuses on the safety challenges posed by
unpredictable and potentially hazardous behaviors in dy-
namic traffic scenarios, and proposes a learning-based hybrid
framework for proactive and reliable trajectory planning.
The framework leverages deep reinforcement learning to
achieve proactive decision-making and velocity planning,
while incorporating an optimization-based trajectory refine-
ment module to ensure feasibility and safety. One of the
key challenges is designing an effective reward function that
balances multiple objectives, enabling the agent to avoid
collisions while maintaining efficiency and comfort. Future
work will focus primarily on this challenge.



REFERENCES

[1] S. Jing, Y. Feng, F. Hui, et al., “Efficient and Eco Lane-Changing
Trajectory Planning for Connected and Automated Vehicles: Deep
Reinforcement Learning-Based Method,” IEEE Transactions on In-
telligent Transportation Systems, vol. 26, no. 7, pp. 9882–9892, 2025.

[2] S. Li, C. Wei, and Y. Wang, “Combining Decision Making and
Trajectory Planning for Lane Changing Using Deep Reinforcement
Learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 9, pp. 16110–16136, 2022.

[3] Z. Xu, G. Dhamankar, A. Nair, et al., “APPLR: Adaptive Planner
Parameter Learning from Reinforcement,” pp. 6086–6092.

[4] L. Zhang, S. Cheng, Z. Wang, et al., “A Safety-Enhanced Rein-
forcement Learning-Based Decision-Making and Motion Planning
Method for Left-Turning at Unsignalized Intersections for Automated
Vehicles,” IEEE Transactions on Vehicular Technology, vol. 73, no.
11, pp. 16375–16388, 2024.

[5] F. Zeng, S. Wang, C. Zhu, et al., “ADRD: LLM-Driven Autonomous
Driving Based on Rule-based Decision Systems,” arXiv:2506.14299,
June 2025.

[6] J. Fan, N. Murgovski, J. Liang, et al., “Exact Obstacle Avoidance for
Autonomous Vehicles in Polygonal Domains,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 54, no. 10, pp. 5964–
5976, 2024.

[7] L. Schafer, S. Manzinger, and M. Althoff, “Computation of Solution
Spaces for Optimization-Based Trajectory Planning,” IEEE Transac-
tions on Intelligent Vehicles, vol. 8, no. 1, pp. 216–231, 2023.

[8] Y. Lu, C. Wei, and L. Ma, “Reliable and Real-Time Highway
Trajectory Planning via Hybrid Learning-Optimization Frameworks,”
arXiv:2508.04436, August 2025.

[9] Y. Wang, C. Wei, S. Li, et al., “A Convex Trajectory Planning
Method for Autonomous Vehicles Considering Kinematic Feasibility
and Bi-State Obstacles Avoidance Effectiveness,” IEEE Transactions
on Vehicular Technology, vol. 73, no. 7, pp. 9575–9590, July 2024.

[10] K. Chen, Y. Luo, M. Zhu, et al., “Human-Like Interactive Lane-
Change Modeling Based on Reward-Guided Diffusive Predictor and
Planner,” IEEE Transactions on Intelligent Transportation Systems,
vol. 26, no. 3, pp. 3903–3916, 2025.

[11] W. Lu, L. Chen, Y. Wang, et al., “Demonstration Data-Driven Pa-
rameter Adjustment for Trajectory Planning in Highly Constrained
Environments,” IEEE Robotics and Automation Letters, vol. 9, no. 12,
pp. 11641–11648, 2024.

https://ui.adsabs.harvard.edu/abs/2025arXiv250614299Z
https://ui.adsabs.harvard.edu/abs/2025arXiv250804436L

	Problem Statement and Motivation
	Proactive Obstacle Avoidance for Trajectory Planning
	Learning-Based Hybrid Planning Frameworks

	Conceptual Framework and Modeling
	Conclusion
	References

