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Abstract— Safe driving remains a major challenge for au-
tonomous vehicles, particularly in complex and safety-critical
scenarios. While imitation learning (IL) has shown promising
driving performance, IL-based models often struggle with
robustness when faced with rare or high-risk events. In this
paper, we propose a game-theoretic integration within the IL
pipeline to enhance decision-making in safety-critical situations.
Specifically, we incorporate a game-theoretic solution into the
IL framework to improve lane-changing safety. We evaluated
the proposed approach in the CARLA simulator. Our exper-
imental results demonstrated that our method improved the
safety of a baseline IL model during lane-changing. These
findings highlight the potential of combining game theory
with deep imitation learning to address safety challenges in
autonomous driving.

I. INTRODUCTION

Autonomous vehicles have the potential to make trans-
portation safer and more efficient, and accessible. Deep
learning, particularly Imitation Learning (IL), offers a
promising approach, but safety remains a critical chal-
lenge, especially in vehicle-to-vehicle interactions. IL mod-
els, trained on fixed datasets, often struggles with out-
of-distribution scenarios, leading to model failures in less
frequent but safety critical scenarios. Game theory can be
a valuable approach to address the limitations of learning-
based model by modeling vehicle-to-vehicle interaction as a
game. This paper proposes a game-theoretic framework to
improve safety in lane-changing scenarios and compares its
performance against a state-of-the-art IL model.

II. LITERATURE REVIEW

Chen et al. [1] highlighted the lack of safety guarantees as
a key challenge for end-to-end autonomous driving in their
survey. Various existing approaches have proposed safety
modules incorporated into different layers in the autonomous
driving architecture, such as perception, control, or planning.
For instance, the Simplex-Drive framework [2] introduced
an adaptive runtime safety mechanism that monitors the
system and switches from a learning-based controller to a
verified safety controller when unsafe behavior is detected.
Similarly, InterFuser [3] integrated a safety module into
their learning-based pipeline, which filters unsafe trajectories
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based on defined constraints, ensuring safe operation in
critical scenarios.

Beyond rule-based or learning-based safety controllers,
game theory can be a potential solution. It models strategic
interactions between agents such as vehicles, pedestrians,
and cyclists, whose actions influence one another. The
Stackelberg game [4] is commonly used to model vehicle-
pedestrian negotiations at interactions, while the Sequential
Chicken model [5] analyzes decision-making between an
autonomous vehicle and a pedestrian approaching a crossing.
For vehicle-to-vehicle interactions, Tian et al. [6] used a
level-k game-theoretic model to simulate multi-vehicle be-
haviors at unsignalized intersection.

While game theory has demonstrated strong potential for
enhancing autonomous vehicle decision-making by modeling
interactions among road users, most implementations address
specific safety challenges in isolation rather than being
integrated into the autonomous driving pipeline.

III. METHODOLOGY

We propose to apply game theory to model vehicle-to-
vehicle interactions and incorporate it into the deep learning
model. TransFuser [7] is selected as the representative model,
as it predicts waypoint sequences that can be modified when
the predicted trajectory is deemed unsafe. The proposed
game-theoretic solution shown in Fig. 1 comprises: (1) The
deep learning system (TransFuser) that predicts ego-vehicle
waypoints based on perception input. (2) An integrated
game-theoretic safety module that filters unsafe trajectories.
(3) A Proportional-Integral-Derivative (PID) controller that
generates the control signals (steering angle, throttle, and
brake) to drive the ego-vehicle based on the filtered trajec-
tories.

The safety module adopts a simplified game-theoretic-
inspired approach, leveraging principles from game theory to
model interactions between vehicles. Unlike classical game
theory, it employs heuristic rules to decide the optimal ego-
vehicle strategies without computing equilibria. The ”game”
involves two players: the ego-vehicle and a surrounding
vehicle. Both players act independently and simultaneously,
without knowledge of the other’s intentions. We only have
control of the ego-vehicle. Thus, its available strategies are:
(1) Compete: If a surrounding vehicle moves slower, the
ego-vehicle will compete by accelerating and proceeding
with changing lane. (2) Yield: If the surrounding vehicle
moves faster, the ego-vehicle will yield by maintaining its
speed and staying in the lane, allowing the surrounding
vehicle to pass. The decisions will be based on the evaluation



Fig. 1. Overview of proposed integration of the game-theoretic safety controller in deep learning pipeline.

of collision risks based on the relative speeds of both
players, ensuring the ego-vehicle always prioritizes safety
while making optimal decisions. Another condition added
for decision-making is the gap between the vehicles, whose
purpose is to give a safe buffer between the vehicles.

IV. EXPERIMENTS

We used CARLA to evaluate the performance of the
integration of the game-theoretic solution in the TransFuser
system. We used the pre-trained TransFuser model to con-
trol the ego-vehicle. The kinematic bicycle model [8] was
adopted to forecast future states and trajectories of the
vehicles in the scene, which we replicated based on the
work of Jaeger’s privileged agent for TransFuser [9]. For
the ego-vehicle, its future trajectories were generated from
TransFuser’s predicted waypoints. Fig. 2 visualizes these
future states, where green and blue bounding boxes represent
the ego and surrounding vehicles, respectively.

Collision risk is triggered when the ego-vehicle’s and
surrounding vehicle’s predicted bounding boxes overlap, as
shown in Fig. 2. When collision risks are predicted, the
game-theoretic framework decides whether the ego-vehicle
should yield or compete. We deployed the solution in
CARLA Town05 and evaluated using the CARLA offline
leaderboard with three evaluation metrics: driving score,
route completion, and infraction score. The proposed game-
theoretic framework was evaluated alongside TransFuser,
which served as the baseline. Two setups were considered:
(1) an incoming rear vehicle moves slower than the ego-
vehicle in the target lane, and (2) an incoming rear vehicle
moves faster in the target lane.

We compared the performance of the baseline TransFuser
model without the game-theoretical safety module, with the
performance when the game-theoretic safety module was
added.

V. RESULTS & DISCUSSIONS

A. Performance of baseline TransFuser in lane-changing
scenario

Although TransFuser demonstrates consistent driving per-
formance, the baseline model without safety module had high

Fig. 2. (Left) Future states generated using the kinematic bicycle model for
the ego-vehicle (green) and a surrounding vehicle (blue). (Right) Collision
risk (red) is predicted when oriented bounding boxes overlap.

Fig. 3. Examples of unsafe lane changing behavior of the baseline
TransFuser without safety controller. The ego-vehicle is circled in green.

infraction score primarily due to vehicle collisions, particu-
larly in unseen scenarios. A common failure occurred when
the ego-vehicle was performing lane change but collided with
surrounding vehicles in adjacent lanes, as shown in Fig. 3.

B. Performance of the proposed integrated game-theoretic
framework in lane-changing scenario

When the surrounding vehicle was faster, the ego-vehicle
made the optimal decision to yield, as shown in Fig. 4. In
another setup, when facing a slower surrounding vehicle, the
ego-vehicle competed and performed lane changing in Fig. 5,

C. Discussion

The results are summarized in the Table I and Table II
for fast- and slow-appraoching surrounding vehicles, respec-



Fig. 4. Game-theoretic inspired: Four time steps showing the yielding ego-
vehicle.

Fig. 5. Game-theoretic inspired: Four time steps showing the competing
ego-vehicle.

Fig. 6. Baseline IL model (without game theory): Ego-vehicle (circled)
successfully changes lane against a slower vehicle without considering a
safe distance.

tively. Since the test route only involved a single lane-
change task, perfect route completion (100%) was expected
when the ego-vehicle made correct decisions. As seen in
Table I, TransFuser alone performed poorly when facing a
fast-approaching vehicle, it followed its predicted waypoints
to change lane but failed to perceive incoming rear vehi-
cle, resulting in collisions. In contrast, the game-theoretic-
inspired solution avoided these collisions by yielding prop-
erly, achieving perfect score.

TABLE I
RESULTS WITH A FAST-APPROACHING SURROUNDING VEHICLE.

Method RC ↑ IS ↑ DS ↑ Veh. ↓
TransFuser (baseline) 100.0 0.60 60.0 0.49
GT-inspired 100.0 1.0 100.0 0.0
RC: Route Completion, IS: Infraction Score, DS: Driving Score, Veh.:

Collisions with vehicles

When the surrounding vehicle was slower, both the base-

line TransFuser and the game-theoretic inspired solution
achieved perfect driving scores without collisions. How-
ever, as shown in Fig. 6, TransFuser’s lane change left
minimal distance between vehicles, relying heavily on the
rear incoming vehicle to yield. This behavior is unsafe. By
incorporating a distance gap condition into the decision-
making, the game-theoretic-inspired solution enabled safe
lane changing.

TABLE II
RESULTS WITH A SLOW-APPROACHING SURROUNDING VEHICLE.

Method RC ↑ IS ↑ DS ↑ Veh. ↓
TransFuser (baseline) 100.0 1.0 100.0 0.0
GT-inspired 100.0 1.0 100.0 0.0

RC: Route Completion, IS: Infraction Score, DS: Driving Score, Veh.:
Collisions with vehicles

VI. CONCLUSIONS

This paper introduced a game-theoretic safety controller
integrated into the TransFuser model for safe lane-changing.
The method’s performance motivates further exploration in
other safety-critical scenarios, such as lane merging in dense
traffic. The experiments serve as a proof-of-concept, high-
lighting the effectiveness and potential of combining deep
learning with game-theoretic models to reduce collision risks
during lane-changing. However, the current implementation
has limitations: it has used simple heuristics and was only
tested in lane-changing scenarios. Further improvements are
needed before real-world deployment.
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