
  

  

Abstract—Addressing the challenges of mobile robot 

navigation in dense and dynamic pedestrian environments, this 

paper proposes a deep reinforcement learning framework that 

integrates pedestrian trajectory prediction with social feature 

understanding. The core contributions of this method are as 

follows: First, a spatio-temporal probability density map is 

designed, which encodes Kalman filter-based pedestrian 

trajectory predictions into structured inputs, enabling the robot 

to explicitly reason about the future position distribution of 

pedestrians. Second, a DBSCAN clustering-based social feature 

extraction mechanism is proposed, combined with a 

bio-inspired attention network, to model group interactions 

among pedestrians. Finally, a novel reward function 

incorporating Time-To-Collision and social potential fields is 

constructed to synergistically optimize both goal-directed 

navigation and social compliance. Simulation results in Gazebo 

demonstrate that, in dense dynamic scenarios, the proposed 

method achieves an 8% improvement in navigation success rate 

compared to existing mainstream approaches, validating its 

comprehensive advantages in safety, efficiency, and social 

rationality. 

I. INTRODUCTION 

With the increasing deployment of mobile robots in dense 
human-populated scenarios such as shopping malls, train 
stations, and hospitals, their reliable navigation within 
dynamic pedestrian environments has become a critical 
challenge. Traditional path planning methods often 
underperform due to the high uncertainty and stochasticity of 
pedestrian motion. Deep Reinforcement Learning (DRL), 
which enables agents to learn optimal policies through 
interaction with the environment, offers a promising solution 
to this problem. Building upon existing works such as 
DRL-VO [1], this paper introduces the following key 
contributions: 

• The use of a Kalman filter model to predict 
pedestrian trajectories, which are encoded as a 
spatio-temporal probability density map serving as 
input to the deep reinforcement learning model. 

• The design of a DBSCAN clustering-based social 
feature extraction mechanism, coupled with a 
bio-inspired social attention network, to enhance the 
model's capability to understand pedestrian group 
behaviors. 

• The formulation of a novel reward function that 
integrates Time-To-Collision and social potential 
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fields, aimed at improving the system's proactive 
obstacle avoidance performance. 

II. DESIGN OF PREDICTION-BASED OBSERVATION SPACE 

A. Trajectory Encoding via Spatio-Temporal Probability 

Density Map 

This study employs a Kalman filter model for pedestrian 
trajectory prediction. The output of this model is encoded into 
a spatio-temporal probability density map, generated through 
the following process: A 20 m × 20 m area surrounding the 
robot is discretized into an 80 × 80 grid. For each predicted 
trajectory point, its position within the grid is calculated, and a 
Gaussian kernel is applied for spatial diffusion across its 3×3 
neighborhood. Concurrently, an exponential time decay factor 
is introduced for prediction points across future time steps. 
Finally, the contributions from all trajectory points are 
superimposed and normalized, resulting in a probability 
density map that reflects the future position distribution of 
pedestrians. This method effectively characterizes the 
probabilistic distribution of future pedestrian positions. 

B. LiDAR Data Processing 

The LiDAR performs 10 scans within 0.5 seconds, 
covering a 180-degree frontal field of view of the robot. The 
720 data points obtained from each scan are processed as 
follows: every 9 consecutive data points are grouped, and their 
minimum and average values are computed separately, 
thereby dividing the scanning area into 80 sectors. By stacking 
recent historical data, an 80×80 LiDAR data map is ultimately 
formed. 

C. Social Feature Extraction Mechanism 

The DBSCAN clustering algorithm [2] is utilized to 
identify pedestrian groups and individual pedestrians. For 
each entity (group or individual), the following 
seven-dimensional features are computed: group size, density, 
average velocity, velocity direction, positional angle (relative 
to the robot), velocity variance, and distance to the robot. All 
features are normalized. Finally, the 6 entities closest to the 
robot are selected to generate a 6×7 social feature matrix. 

D. Sub-goal Optimization and Selection Strategy 

This study improves upon the Pure Pursuit algorithm [3] 
by dynamically adjusting the path segment index to select 
sub-goals. When it is detected that the line connecting the 
robot and a candidate sub-goal intersects an obstacle, the 
algorithm automatically backtracks and selects a closer point 
on the path as the sub-goal, iterating until a safe navigation 
point is identified. 
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III. DEEP REINFORCEMENT LEARNING NETWORK 

ARCHITECTURE 

This study employs two distinct network frameworks to 
process different input features: 

A. Feature Extraction Network 

A Deep Neural Network (DNN) is adopted to represent the 
parametric model π, leveraging its exceptional function 
approximation capability. The network utilizes an early fusion 
strategy, concatenating the LiDAR data and the pedestrian 
trajectory prediction map (both formatted as 80×80 arrays) 
along the depth dimension. The concatenated data is 
subsequently passed through one 2D convolutional layer, six 
bottleneck residual blocks [4], and two 2D pooling layers. At 
the terminus of the feature extraction network, a fully 
connected layer integrates the extracted high-level features 
with the sub-goal information and the social features 
processed by the bio-inspired network, thereby 
comprehensively capturing environmental context. Ultimately, 
the network outputs a 256-dimensional high-level feature 
vector. 

B. Bio-inspired Social Attention Network 

To achieve a deeper understanding of social navigation 
scenarios, we propose a bio-inspired social attention network. 
Its core consists of three components: First, a four-head 
self-attention mechanism is responsible for modeling the 
complex interactions among multiple pedestrians. Second, we 
design a set of learnable bio-inspired prior weights, grounded 
in human behavior studies. These weights are initialized to 
assign higher importance to critical features such as distance 
and motion velocity, guiding the network to rapidly focus on 
potential collision risks. Finally, a spatial attention 
sub-module is incorporated to simulate the human visual 
preference for paying greater attention to the frontal area 
during navigation. This design aims to learn obstacle 
avoidance strategies that align with human social conventions 
from data. 

C. Actor-Critic based Reinforcement Learning Network 

The Proximal Policy Optimization algorithm (PPO) [5] is 
employed to train the network. The network structure 
comprises two parts: The Actor network is responsible for 
outputting continuous actions, namely the robot's linear and 
angular velocities. The Critic network is used to estimate the 
value function V(s) of the current state. The action output 
range is constrained as follows: linear velocity [0, 0.5] m/s, 
angular velocity [-2, 2] rad/s. 

D. Reward Function Design 

The reward function is designed to synergistically 

optimize goal-directed navigation, safety, and social 

compliance. It consists of the following components: 

1) Basic Reward Terms 

• Goal reward: :Encourages the robot to move 

towards the goal. This includes a sparse reward for 
successful goal arrival and a dense reward 
proportional to the reduction in distance to the goal. 

• Collision Avoidance Reward : Penalizes 
proximity to obstacles based on LiDAR scan data. 

• Smoothness Reward : Penalizes abrupt changes in 
angular velocity to encourage motion smoothness. 

2) Time-To-Collision (TTC) Reward 

The Time-To-Collision is calculated based on the relative 
position and velocity between the robot and pedestrians. The 
TTC concept, formally introduced from a visual control 
perspective by Lee et al. [6], provides a direct metric for 
assessing collision imminence. In this study, the TTC reward 
is designed as: 

 

Here, the  is set to 3.0 seconds. This function 
penalizes potential collision risks. 

3) Social Potential Field Reward 

Inspired by the repulsive force formula in the Social Force 
Model [7], a social potential field reward function is designed: 

 

This function comprehensively considers pedestrian group 
characteristics and penalizes behaviors that intrude upon 
social comfort zones. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

To validate the effectiveness of the proposed algorithm in 
practical scenarios, this section presents a comprehensive 
evaluation of the navigation policy within a simulation 
environment built in Gazebo. The performance of the 
proposed algorithm is validated by comparing it against 
traditional local planners (e.g., DWA [8], TEB [9], E3MoP 
[10]) and a learning-based method (DRL-VO) across metrics 
such as navigation success rate, average path length, average 
navigation time, and average speed. Furthermore, comparative 
experiments conducted in environments with varying 
pedestrian densities are used to further examine the 
generalization capability of the proposed method. 

A. Simulation Setup 

The experimental arena in the Gazebo simulation 
environment is configured to be 20 m × 10 m, populated with 
irregularly distributed static obstacles and 35 dynamic 
pedestrians moving along different paths. The robot platform 
utilizes a simulated Turtlebot2 model equipped with a ZED 
stereo camera and a Hokuyo UTM-30LX LiDAR, with its 
maximum speed limited to 0.5 m/s. The ZED camera's depth 
range is set to [0.3, 20] m with a field of view (FOV) of 90°, 
while the LiDAR's measurement range is set to [0.1, 30] m 
with a FOV of 270°. 

Training was conducted on a high-performance server 
equipped with 256 logical CPU cores and three NVIDIA 
GeForce GPUs. The testing phase utilized a laptop with an 
AMD Ryzen 7 5800H processor and 16 GB of RAM. All 
software and hardware environments ran Ubuntu 20.04, ROS 
Noetic, and Gazebo 11. 

B. Comparative Results 

The proposed method, which incorporates pedestrian 
trajectory prediction, is compared against traditional methods 



  

(DWA, TEB, E3MoP) and the learning-based method 
DRL-VO. The evaluation metrics include success rate, 
average navigation time, average path length, and average 
speed. The simulation results are presented in Table I. To 
validate the algorithm's generalization capability, the 
performance of the prediction-enhanced model is compared 
against baseline methods under different pedestrian densities, 
with the results shown in Table II. 

TABLE I.  COMPARISON OF SUCCESS RATES AMONG LOCAL 

PLANNING ALGORITHMS IN DYNAMIC ENVIRONMENTS 

Method 
Success  

Rate 

Average 

Time(s) 

Average  

Length(m) 

Average  

Speed 

(m/s) 

DWA 0.68 11.03 4.89 0.44 

TEB 0.72 20.37 6.38 0.31 

E3MoP 0.66 15.80 5.02 0.32 

DRL-VO 0.76 14.11 6.36 0.45 

Ours 0.84 15.08 6.83 0.45 

 

TABLE II.  COMPARISON OF ROBOT GOAL-REACHING SUCCESS RATES 

IN DYNAMIC ENVIRONMENTS 

Number of  

Pedestrians 
Method 

Success  

Rate 

Average 

Time(s) 

Average  

Length 

(m) 

Average  

Speed 

(m/s) 

15 

DRL-V

O 

0.87 15.05 6.56 0.44 

Ours 0.92 15.26 6.64 0.44 

25 

DRL-V

O 
0.81 14.58 6.61 0.45 

Ours 0.88 15.86 7.02 0.44 

35 

DRL-V

O 
0.76 14.11 6.36 0.45 

Ours 0.84 15.08 6.83 0.45 

 

C. Results Analysis 

The E3MoP algorithm, which focuses on path smoothness 
and safety, is primarily designed for static environments. It 
does not fully account for the dynamic nature of pedestrians, 
and its safety distance parameters require tuning for specific 
scenarios, leading to its relatively low success rate. The DWA 
method achieves the best performance in terms of average 
time and average path length. This likely stems from its 
relatively simple obstacle avoidance strategy when 
encountering obstacles, which shortens the planned path but 
simultaneously increases collision risk. The TEB method 
exhibits the longest average navigation time, attributable to 
increased computational overhead caused by frequent path 
replanning in dynamic environments. 

By employing the algorithm proposed in this study, the 
robot's obstacle avoidance capability in dynamic 
environments is significantly enhanced. Taking the 
high-density scenario with 35 pedestrians as an example, the 
success rate of our method, which integrates prediction 
information, reaches 0.84, representing an 8% improvement 
over methods using only the current pedestrian positions and 
velocities. It is noteworthy that our method results in an 
increased average path length. This is primarily because the 

robot, while balancing goal-directed movement and 
pedestrian avoidance, demonstrates enhanced compliance 
with pedestrian social spaces. 

V. CONCLUSION 

This paper proposes a deep reinforcement learning-based 

navigation method for mobile robots. By introducing a 

spatio-temporal probability density map, a social feature 

extraction mechanism, and a multi-modality-informed reward 

function, the method effectively enhances navigation 

performance in dense and dynamic pedestrian environments. 

Experimental results demonstrate the favorable practicality 

and robustness of the proposed approach in complex crowd 

scenarios. 

Although this study has achieved certain outcomes, there 

remains room for further improvement. The simulation 

environment assumes perfect access to ground-truth 

pedestrian positions and velocities, whereas in real-world 

settings, acquiring this information involves uncertainty. The 

impact of such perceptual uncertainties on navigation success 

rates warrants further investigation. Future work will focus on 

validating the algorithm's performance under more realistic 

perceptual conditions and deploying it on a physical robot 

platform. 
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