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Abstract—Addressing the challenges of mobile robot
navigation in dense and dynamic pedestrian environments, this
paper proposes a deep reinforcement learning framework that
integrates pedestrian trajectory prediction with social feature
understanding. The core contributions of this method are as
follows: First, a spatio-temporal probability density map is
designed, which encodes Kalman filter-based pedestrian
trajectory predictions into structured inputs, enabling the robot
to explicitly reason about the future position distribution of
pedestrians. Second, a DBSCAN clustering-based social feature
extraction mechanism is proposed, combined with a
bio-inspired attention network, to model group interactions
among pedestrians. Finally, a novel reward function
incorporating Time-To-Collision and social potential fields is
constructed to synergistically optimize both goal-directed
navigation and social compliance. Simulation results in Gazebo
demonstrate that, in dense dynamic scenarios, the proposed
method achieves an 8% improvement in navigation success rate
compared to existing mainstream approaches, validating its
comprehensive advantages in safety, efficiency, and social
rationality.

I. INTRODUCTION

With the increasing deployment of mobile robots in dense
human-populated scenarios such as shopping malls, train
stations, and hospitals, their reliable navigation within
dynamic pedestrian environments has become a critical
challenge. Traditional path planning methods often
underperform due to the high uncertainty and stochasticity of
pedestrian motion. Deep Reinforcement Learning (DRL),
which enables agents to learn optimal policies through
interaction with the environment, offers a promising solution
to this problem. Building upon existing works such as
DRL-VO [1], this paper introduces the following key
contributions:

e The use of a Kalman filter model to predict
pedestrian trajectories, which are encoded as a
spatio-temporal probability density map serving as
input to the deep reinforcement learning model.

e The design of a DBSCAN clustering-based social
feature extraction mechanism, coupled with a
bio-inspired social attention network, to enhance the
model's capability to understand pedestrian group
behaviors.

e The formulation of a novel reward function that
integrates Time-To-Collision and social potential
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fields, aimed at improving the system's proactive
obstacle avoidance performance.

II. DESIGN OF PREDICTION-BASED OBSERVATION SPACE

A. Trajectory Encoding via Spatio-Temporal Probability
Density Map

This study employs a Kalman filter model for pedestrian
trajectory prediction. The output of this model is encoded into
a spatio-temporal probability density map, generated through
the following process: A 20 m X 20 m area surrounding the
robot is discretized into an 80 x 80 grid. For each predicted
trajectory point, its position within the grid is calculated, and a
Gaussian kernel is applied for spatial diffusion across its 3x3
neighborhood. Concurrently, an exponential time decay factor
is introduced for prediction points across future time steps.
Finally, the contributions from all trajectory points are
superimposed and normalized, resulting in a probability
density map that reflects the future position distribution of
pedestrians. This method effectively characterizes the
probabilistic distribution of future pedestrian positions.

B. LiDAR Data Processing

The LiDAR performs 10 scans within 0.5 seconds,
covering a 180-degree frontal field of view of the robot. The
720 data points obtained from each scan are processed as
follows: every 9 consecutive data points are grouped, and their
minimum and average values are computed separately,
thereby dividing the scanning area into 80 sectors. By stacking
recent historical data, an 80x80 LiDAR data map is ultimately
formed.

C. Social Feature Extraction Mechanism

The DBSCAN clustering algorithm [2] is utilized to
identify pedestrian groups and individual pedestrians. For
each entity (group or individual), the following
seven-dimensional features are computed: group size, density,
average velocity, velocity direction, positional angle (relative
to the robot), velocity variance, and distance to the robot. All
features are normalized. Finally, the 6 entities closest to the
robot are selected to generate a 6x7 social feature matrix.

D. Sub-goal Optimization and Selection Strategy

This study improves upon the Pure Pursuit algorithm [3]
by dynamically adjusting the path segment index to select
sub-goals. When it is detected that the line connecting the
robot and a candidate sub-goal intersects an obstacle, the
algorithm automatically backtracks and selects a closer point
on the path as the sub-goal, iterating until a safe navigation
point is identified.



III. DEEP REINFORCEMENT LEARNING NETWORK
ARCHITECTURE

This study employs two distinct network frameworks to
process different input features:

A. Feature Extraction Network

A Deep Neural Network (DNN) is adopted to represent the
parametric model =, leveraging its exceptional function
approximation capability. The network utilizes an early fusion
strategy, concatenating the LiDAR data and the pedestrian
trajectory prediction map (both formatted as 80x80 arrays)
along the depth dimension. The concatenated data is
subsequently passed through one 2D convolutional layer, six
bottleneck residual blocks [4], and two 2D pooling layers. At
the terminus of the feature extraction network, a fully
connected layer integrates the extracted high-level features
with the sub-goal information and the social features
processed by the Dbio-inspired network, thereby
comprehensively capturing environmental context. Ultimately,
the network outputs a 256-dimensional high-level feature
vector.

B. Bio-inspired Social Attention Network

To achieve a deeper understanding of social navigation
scenarios, we propose a bio-inspired social attention network.
Its core consists of three components: First, a four-head
self-attention mechanism is responsible for modeling the
complex interactions among multiple pedestrians. Second, we
design a set of learnable bio-inspired prior weights, grounded
in human behavior studies. These weights are initialized to
assign higher importance to critical features such as distance
and motion velocity, guiding the network to rapidly focus on
potential collision risks. Finally, a spatial attention
sub-module is incorporated to simulate the human visual
preference for paying greater attention to the frontal area
during navigation. This design aims to learn obstacle
avoidance strategies that align with human social conventions
from data.

C. Actor-Critic based Reinforcement Learning Network

The Proximal Policy Optimization algorithm (PPO) [5] is
employed to train the network. The network structure
comprises two parts: The Actor network is responsible for
outputting continuous actions, namely the robot's linear and
angular velocities. The Critic network is used to estimate the
value function V(s) of the current state. The action output
range is constrained as follows: linear velocity [0, 0.5] m/s,
angular velocity [-2, 2] rad/s.

D. Reward Function Design

The reward function is designed to synergistically
optimize goal-directed navigation, safety, and social
compliance. It consists of the following components:
1) Basic Reward Terms

e Goal reward: 1 :Encourages the robot to move
towards the goal. This includes a sparse reward for
successful goal arrival and a dense reward
proportional to the reduction in distance to the goal.

T

e Collision Avoidance Reward T‘Ct Penalizes
proximity to obstacles based on LiDAR scan data.

e Smoothness Reward T'“E: Penalizes abrupt changes in
angular velocity to encourage motion smoothness.

2) Time-To-Collision (TTC) Reward

The Time-To-Collision is calculated based on the relative
position and velocity between the robot and pedestrians. The
TTC concept, formally introduced from a visual control
perspective by Lee et al. [6], provides a direct metric for
assessing collision imminence. In this study, the TTC reward
is designed as:

" a ttc
Tete = Wye "L — 7777
‘ ‘ ttcthreshold
Here, the ttcy esnoq 15 Set to 3.0 seconds. This function
penalizes potential collision risks.

3) Social Potential Field Reward

Inspired by the repulsive force formula in the Social Force

Model [7], a social potential field reward function is designed:
log (1 + groupsize) dist

dist

t _
Tsocial = —Wsocial * cexp (—
This function comprehensively considers pedestrian group
characteristics and penalizes behaviors that intrude upon
social comfort zones.

IV. EXPERIMENTS AND RESULTS ANALYSIS

To validate the effectiveness of the proposed algorithm in
practical scenarios, this section presents a comprehensive
evaluation of the navigation policy within a simulation
environment built in Gazebo. The performance of the
proposed algorithm is validated by comparing it against
traditional local planners (e.g., DWA [8], TEB [9], E3MoP
[10]) and a learning-based method (DRL-VO) across metrics
such as navigation success rate, average path length, average
navigation time, and average speed. Furthermore, comparative
experiments conducted in environments with varying
pedestrian densities are used to further examine the
generalization capability of the proposed method.

A. Simulation Setup

The experimental arena in the Gazebo simulation
environment is configured to be 20 m X 10 m, populated with
irregularly distributed static obstacles and 35 dynamic
pedestrians moving along different paths. The robot platform
utilizes a simulated Turtlebot2 model equipped with a ZED
stereo camera and a Hokuyo UTM-30LX LiDAR, with its
maximum speed limited to 0.5 m/s. The ZED camera's depth
range is set to [0.3, 20] m with a field of view (FOV) of 90°,
while the LIDAR's measurement range is set to [0.1, 30] m
with a FOV of 270°.

Training was conducted on a high-performance server
equipped with 256 logical CPU cores and three NVIDIA
GeForce GPUs. The testing phase utilized a laptop with an
AMD Ryzen 7 5800H processor and 16 GB of RAM. All
software and hardware environments ran Ubuntu 20.04, ROS
Noetic, and Gazebo 11.

B.  Comparative Results

The proposed method, which incorporates pedestrian
trajectory prediction, is compared against traditional methods
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(DWA, TEB, E>MoP) and the learning-based method
DRL-VO. The evaluation metrics include success rate,
average navigation time, average path length, and average
speed. The simulation results are presented in Table I. To
validate the algorithm's generalization capability, the
performance of the prediction-enhanced model is compared
against baseline methods under different pedestrian densities,
with the results shown in Table II.

TABLE L. COMPARISON OF SUCCESS RATES AMONG LOCAL
PLANNING ALGORITHMS IN DYNAMIC ENVIRONMENTS
Average
Success Average Average
Method . Speed
Rate Time(s) Length(m) (m/s)
DWA 0.68 11.03 4.89 0.44
TEB 0.72 20.37 6.38 0.31
E°*MoP 0.66 15.80 5.02 0.32
DRL-VO 0.76 14.11 6.36 0.45
Ours 0.84 15.08 6.83 0.45
TABLE II. COMPARISON OF ROBOT GOAL-REACHING SUCCESS RATES
IN DYNAMIC ENVIRONMENTS
Average Average
I;uénbtq of Method Sl;{cactzss ?;;ir:(i; Length Speed
caestrians (m) (l “I]/S)
DRL-V 0.87 15.05 6.56 0.44
15 0
Ours 0.92 15.26 6.64 0.44
DRL-V 0.81 14.58 6.61 0.45
25 0
Ours 0.88 15.86 7.02 0.44
DRL-V 0.76 14.11 6.36 0.45
35 0
Ours 0.84 15.08 6.83 0.45

C. Results Analysis

The E*MoP algorithm, which focuses on path smoothness
and safety, is primarily designed for static environments. It
does not fully account for the dynamic nature of pedestrians,
and its safety distance parameters require tuning for specific
scenarios, leading to its relatively low success rate. The DWA
method achieves the best performance in terms of average
time and average path length. This likely stems from its
relatively simple obstacle avoidance strategy when
encountering obstacles, which shortens the planned path but
simultaneously increases collision risk. The TEB method
exhibits the longest average navigation time, attributable to
increased computational overhead caused by frequent path
replanning in dynamic environments.

By employing the algorithm proposed in this study, the
robot's obstacle avoidance capability in dynamic
environments is significantly enhanced. Taking the
high-density scenario with 35 pedestrians as an example, the
success rate of our method, which integrates prediction
information, reaches 0.84, representing an 8% improvement
over methods using only the current pedestrian positions and
velocities. It is noteworthy that our method results in an
increased average path length. This is primarily because the

robot, while balancing goal-directed movement and
pedestrian avoidance, demonstrates enhanced compliance
with pedestrian social spaces.

V. CONCLUSION

This paper proposes a deep reinforcement learning-based
navigation method for mobile robots. By introducing a
spatio-temporal probability density map, a social feature
extraction mechanism, and a multi-modality-informed reward
function, the method effectively enhances navigation
performance in dense and dynamic pedestrian environments.
Experimental results demonstrate the favorable practicality
and robustness of the proposed approach in complex crowd
scenarios.

Although this study has achieved certain outcomes, there
remains room for further improvement. The simulation
environment assumes perfect access to ground-truth
pedestrian positions and velocities, whereas in real-world
settings, acquiring this information involves uncertainty. The
impact of such perceptual uncertainties on navigation success
rates warrants further investigation. Future work will focus on
validating the algorithm's performance under more realistic
perceptual conditions and deploying it on a physical robot
platform.
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